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Potential role in hematopoiesis, leukemogenesis, and ALL etiology for putatively novel loci. 

We annotated each of the three putatively associated novel loci to ALL using HaploReg (version 

4.1(1) and GTEx portal(2). Chromatin interactions in the genomic neighborhood of the new top 

hits were evaluated using the program Juicebox(3) and high resolution Hi-C data from the B-

lymphoblastoid cell line GM12878(4). We summarize our findings below. The associated variants 

in 6q23 are located between HBS1L and MYB, a myeloblastosis oncogene that encodes a critical 

regulator protein of lymphocyte differentiation and hematopoiesis(5) . This locus is already well 

known for associations with multiple blood cell measurements, severity of major hemoglobin 

disorders, and β-thalassemia(6,7). The associated SNPs in our study fall within HBS1L-MYB 

intergenic region known to harbor multiple variants that reduce transcription factor binding, affect 

long-range interaction with MYB, and impact MYB expression(6,8). The lead SNP rs9376090 is in 

a predicted enhancer region in K562 leukemia cells and GM12878 lymphoblastoid cells, and is a 

known GWAS hit for platelet count(5) and hemoglobin concentration(9,10). Also, it is an eQTL 

in lymphocytes and whole blood(2) for ALDH8A1, which encodes aldehyde dehydrogenases, a 

cancer stem cell marker and a regulator self-renewal, expansion, and differentiation.  

 

One of the associated loci in 10q21 has a distinct haplotype structure, with 130 highly correlated 

SNPs (r2 > 0.8) associated with ALL (Figure 1B). This haplotype structure is observed in LAT and 

EAS, and the associations are driven by alleles with higher frequency in LAT and EAS than NLW 

or AFR (Table S4, Supplementary Figure A).  



 

This 400kb region is rich with genetic variants associated with blood cell traits such as platelet 

count, myeloid white cell count, and neutrophil percentage of white cells(11,12). It is also 

associated with IL-10 levels(13) which was shown to be in deficit in ALL cases(14). The signal 

region is contained within the intron of JMJD1C, a histone demethylase that a recent study has 

found to regulate abnormal metabolic processes in AML(15). Previous studies have found that it 

acts as a coactivator for key transcription factors to ensure survival of AML cells(16) and self-

renewal of mouse embryonic stem cells(17).  We note that the association at this locus did not 

replicate in COG and CCLS replication cohort and should be assessed in additional datasets.  

 

The second locus in 10q21 contains intronic variants in the TET1 gene, which is well known for 

its oncogenicity in several malignancies including AML(18). A recent study showed the epigenetic 
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Figure A. Association signal around NRBF2/JMJD1C locus on chr10 in LAT and 
EAS cohorts.
LocusZoom plots show distinct haplotypes showing association with ALL in (A) LAT 
and (B) EAS cohorts in our study. Diamond symbol indicates the lead SNP in each 
cohort. Color of remaining SNPs is based on linkage disequilibrium (LD) as measured 
by r2 with the lead SNP in the respective cohort. All coordinates in x-axis are in hg19. 
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regulator TET1 is highly expressed in T-cell ALL and is crucial for human T-ALL cell growth in 

vivo(19).  We found the associations at this locus to be slightly stronger for T-ALL than for B-

ALL in a small subset of individuals with ALL subtype information, though the difference is not 

statistically significant (Table S5). Of the four significant variants in this locus, SNP rs58627364 

lies in the promoter region of TET1 while the remaining three variants did not appear to overlap 

functional elements (Supplementary Figure B).  

 

However, none of these SNPs were observed as eQTL for TET1 in whole blood or lymphoblastoid 

cells(20); future studies may want to investigate whether these SNPs affect TET1 expression in 

hematopoietic stem or progenitor cells.  

 

Figure B. Functional annotation of the TET1 locus. 
For the immediately nearby location around the top associated SNPs in our meta-
analysis(blue vertical lines), we extracted the functionally annotated genomic/epigenomic 
features from multiple cell types in ENCODE data. Functional data were retrieved from 
UCSC genome browser.
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Supplementary Methods 

Study Cohorts 

In our efforts to be sensitive to the genomic history of human populations, we note the complexity 

of discussing race, ethnicity and ancestry in a genetic study. As a convention, we used the 

following terms and abbreviations to refer to each self-reported ethnic group in our study: African 

American (AFR), East Asian (EAS), Latino American (LAT), and non-Latino white (NLW). As a 

baseline for the current analysis, we supplemented the previous trans-ethnic analysis by including 

additional controls for NLW and added the EAS cohort(21). The California Childhood Cancer 

Record Linkage Project (CCRLP) includes all children born in California during 1982-2009 and 

diagnosed with ALL at the age of 0-14 years per California Cancer Registry records. Our age 

cutoff of 15 was designed to capture most childhood ALL cases, whose incidence peaks between 

ages 2-7, and to limit dilution of genetic effects of different subtypes that affect older teenagers. 

Also, we note that specific cytogenetic subtyping is not available for our entire discovery cohort 

since our diagnostic catchment extends back to 1988. Children who were born in California during 

the same period and not reported to California Cancer Registry as having any childhood cancer 

were considered potential controls. Detailed information on sample matching, preparation and 

genotyping has been previously described(21). Because ALL is a rare childhood cancer, for the 

purpose of a genetic study we followed previous practice(21) and incorporated additional controls 

using adult individuals from the Kaiser Resource for Genetic Epidemiology Research on Aging 

Cohort (GERA; dbGaP accession: phs000788.v1.p2). The GERA cohort was chosen because a 

very similar genotyping platform had been used: Affymetrix Axiom World arrays. For replications 

we included two independent ALL cohorts: (i) individuals of predominantly European ancestry 

from the Children’s Oncology Group (COG; dbGAP accession: phs000638.v1.p1) as cases and 



from Wellcome Trust Case–Control Consortium(22) (WTCCC) as controls; and (ii) individuals of 

European and Latino ancestry from the California Childhood Leukemia Study (CCLS), a non-

overlapping California case-control study (1995-2008)(23). The quality control and imputation for 

both the discovery and replication cohorts were conducted in ethnic strata and generally followed 

previous pipelines of ALL GWAS, but with additional attention paid to incorporate the entire 

GERA cohort and ensuring data quality post-imputation. See Supplemental Methods for details. 

This study was approved by Institutional Review Boards at the California Health and Human 

Services Agency, University of Southern California, Yale University, and the University of 

California San Francisco. 

 

Data Processing and Quality Control 

The quality control (QC) on single nucleotide polymorphism (SNP) array genotypes and samples 

were carried out in each population and dataset in parallel, performed in two stages: pre-imputation 

and post-imputation. In pre-imputation QC, the sex chromosomes were excluded, and SNPs were 

filtered out on the basis of call rate (<98%), minor allele frequency (MAF<0.01), genome-wide 

relatedness (PI_HAT>0.02), genome heterozygosity rate (mean heterozygosity± 6Std), and 

deviation from Hardy-Weinberg equilibrium in controls (P<10-5).  Samples with call rate < 95% 

were also removed. In general, individuals were included in each of the four ethnic groups based 

on their self-reported ethnicity. We did not attempt to reassign individuals to different ethnic 

groups based on estimated genetic ancestry. We performed principal components analysis for each 

population including our study subjects along with 1000 Genomes Project reference data (24) to 

identify extreme outlier individuals that clustered apart from other individuals in their self-reported 

race/ethnicity groups: this identified a small subset of individuals (29 cases and 51 controls from 



CCRLP, 31 individuals from GERA) among self-reported Asians (total n=722) that clustered with 

South Asian reference individuals, as well as 5 self-reported African American individuals out of 

n=3572 from the GERA cohort that clustered with East Asian reference individuals. These appear 

to result from a lack of finer-scale ethnic labels for self-report, or a mis-labeling of individual 

records, and these individuals were dropped from our analysis.  

 

To control for potential batch effect and systematic bias between array types, we further performed 

two separate GWASs for quality control purposes. First, stratified by ethnicity and restricted to 

SNPs passing the filters described above in both CCRLP and GERA, we compared CCRLP 

controls and GERA individuals. Second, using the GERA NLW cohort we compared individuals 

that were genotyped on the Axiom type “A” to those genotyped on the type “O” reagent kit (NLW 

was the only cohort in GERA that was genotyped using both reagent kits). Twenty principal 

components (PCs) were included as covariates of the logistic regression. In both comparisons we 

observed inflation of the test statistics suggesting a subset of SNPs exhibited evidence of batch 

effect, thus we removed variants with P < 0.01 in any of the comparisons from all populations.  

 

We then performed genome-wide imputation with the overlapping set of remaining SNPs (N = 

431,543 in AFR, 259,468 in EAS, 547,575 in LAT and 362,977 in NLW) in each dataset using 

Haplotype Reference Consortium (HRC v r1.1 2016) as a reference in the Michigan Imputation 

Server(25). The different number of SNPs passing QC and used in imputation reflects the fact that 

each ethnic group in CCRLP was genotyped using Affymetrix World arrays optimized for the 

Latino population (i.e., Axiom LAT array). In post-imputation QC, we filtered variants in each 

ethnic group by imputation quality (R2 < 0.3), MAF (< 0.01), and allele frequency difference 



between non-Finnish Europeans in the Genome Aggregation Database (gnomAD)(26) and CCRLP 

NLW controls ( > 0.1). We next performed another GWAS between CCRLP controls and GERA 

individuals to conservatively protect against between-cohort batch effects after imputation, and 

removed variants with P < 1x10-5. In principal components analysis using imputed data, we 

identified and removed 31 individuals in GERA LAT that were extreme outliers after imputation 

in PCs 1 to 20. Stratified by ethnicity, the CCRLP and GERA datasets were then merged to perform 

GWAS of ALL. In total, 124, 318, 1878, 1162 cases and 2067, 5017, 8410, 57341 controls, in 

AFR, EAS, LAT and NLW, respectively were used in GWAS for ALL. A total of 7,628,894 SNPs 

that remained in at least three ethnic groups were tested in our GWAS discovery analysis. 

 

For replication cohorts, we generally followed the same quality control pipeline. For COG and 

WTCCC, because self-identified ethnicity was not available to us, we performed global ancestry 

estimations using ADMIXTURE and the 1000 Genomes populations as reference and removed 

individuals with < 90% estimated European ancestry from the analysis. This resulted in a total of 

1504 and 2931 NLW cases and controls, respectively, from COG/WTCCC, and 472 NLW cases, 

340 NLW controls, 750 LAT cases and 504 LAT controls, from CCLS. 

 

Association Testing  

We used SNPTEST(27) (v2.5.2) to test the association between imputed genotype dosage and 

case-control status in logistic regression, after adjusting for the top 20 principal components (PCs). 

Sex was not included as a covariate, and we found sex was not correlated with genotype dosage 

of any of the putatively associated SNPs (data not shown). Results from the four ethnic-stratified 

analyses were combined via the fixed-effect meta-analysis with variance weighting using 



METAL(28). Only variants passing QC in at least three of the four ethnic groups were meta-

analyzed. A genome-wide threshold of 5 x 10-8 was used for significance in the discovery stage. 

As a convention, we referred to the locus by the names of the closest genes from the index variant; 

we acknowledge that these genes may not be the causal gene. A Bonferroni-corrected significance 

of 0.00312 (=0.05/16) was used for replication of previously reported susceptibility 

variants(21,29–36).  Cochran's Q-test for heterogeneity was performed using METAL(28). To 

perform conditional analysis in identifying secondary associations within a locus, the lead SNP 

was additionally included in the regression model, again using 5 x 10-8 as threshold for significance.  

 

Familial risk per variant 

The percentage of familial relative risk (FRR) explained by each genetic variant was calculated as 

per Schumacher et al(37)4/14/22 9:47:00 AM . The familial relative risk due to locus 𝑘 (𝜆!) is 

given by  

 𝜆! =
"!#!

"$%!
("!#!$%!)"

 

where 𝑝! is the frequency of the risk allele for locus 𝑘 in each population, 𝑞! = 1 − 𝑝!, and 𝑟! is 

the estimated per-allele odds ratio from meta-analysis. The percentage of familial relative risk is 

calculated as ∑ log	𝜆!/ log 𝜆(!  where 𝜆( is the observed familial risk to first-degree relatives of 

ALL cases, assumed to be 3.2 as per Kharazmi et al. (38). 

 

Heritability Estimates 

We estimated heritability ascribable to all post-QC imputed SNPs with MAF ≥	0.05 in our GWAS 

data using the genome-wide complex trait analysis software (GCTA)(39). We followed the GCTA-

LDMS approach to estimate heritability from imputed data(40), which recommended stratifying 



SNPs into bins based on their LD scores and/or minor allele frequency. Using GCTA, we 

computed the genetic relationship matrix (GRM) of pairs of samples using SNPs in each bin, and 

used the multiple GRMs as input to obtain a restricted maximum likelihood (REML) estimate of 

heritability. All individuals in discovery analysis were used for LAT (n=10,288). For 

computational efficiency and for maintaining a close balance in sample size to the LAT data, we 

randomly sampled 10,000 NLW GERA controls to be included with all of CCRLP NLW cases 

and controls (total N = 12,391). We used a prevalence of 4.41x10-4 and 4.09x10-4 for childhood 

ALL in LAT and NLW respectively based on data from the Surveillance Research Program, 

(National Cancer Institute SEER*Stat software version 8.3.8; https://seer.cancer.gov/seerstat) to 

convert the estimated heritability to the liability scale. Because the NLW are expected to be much 

better imputed using HRC than LAT, particularly at rare variants, our genome-wide imputed data 

potentially could be used to partition the contribution of low frequency (0.01 ≤ MAF < 0.05) and 

common (MAF ≥ 0.05) variants in NLW population. In this case, we performed GCTA-LDMS 

analysis in 8 strata: two MAF strata (low frequency and common) by four quartiles of LD score 

strata. We also used these same GRMs to estimate heritability using phenotype-correlation-

genotype-correlation (PCGC) regression as implemented in LDAKv5.1(41,42). 

 

We further applied an approach to estimate heritability in LAT population using local ancestry(43). 

In brief, we first estimated the local ancestry in LAT using RFMix(44), using the combined 1000 

Genomes Project and Human Genome Diversity Project(26) as ancestry references. Specifically, 

we used AFR (excluding ACB and ASW individuals; n=716), self-reported Non-Finnish European 

(NFE; n=617), and subjects having > 85% global AMR ancestry(based on ADMIXTURE(45); 

n=94) as the reference for African, European, and Native American ancestries. We used the local 



ancestry to estimate the genetic similarity and the heritability explained by local ancestry h2γ, 

calculated the genetic distance FSTC between the ancestral populations, and the mean admixture 

proportion θ. Following Zaitlen et al(43), the heritability is then calculated using formula ℎ)* =

2	θ(1 − θ)	ℎ)𝐹+,- . Because the original approach is only applicable to two-way admixed 

populations, we assigned the ancestry call as missing if the most likely local ancestry call for a 

locus is AFR. This sets approximately 5% of the genome as missing. The number of copies of 

local ancestry are standardized to have zero mean and unit variance to compute the genetic 

similarity matrix. The heritability explained by local ancestry h2 was estimated in GCTA, with the 

global AMR ancestry normalized by non-African ancestry as a quantitative covariate. The genetic 

distance 𝐹+,-  between the ancestral populations was computed based on the allele frequencies in 

the reference population as (.#$%/.&'()
"

).	(1/.)
 where 𝑓234 and 𝑓567 	are allele frequencies in AMR and 

NFE reference panel and the expected frequency in the admixed population, 𝑓, is the average of 

ancestral frequencies weighted by the average normalized global ancestries. The genome wide 

FSTC is the average value across 417,635 sites where the minor allele frequencies are greater than 

0.05 in both ancestral populations. 

 

To measure genetic correlation between LAT and NLW, we used SNPs with MAF ≥ 0.05 in both 

populations to generate GRM using R as per Mancuso et al (46). The individuals used in univariate 

REML for each ethnicity were used for the bivariate analysis (n=22,679). We used imputed dosage 

data to estimate GRM for each unique pair of ancestry groups as  

𝐴 =
1
𝑚 9𝑍1𝑍1

8 𝑍1𝑍)8

𝑍)𝑍18 𝑍)𝑍)8
;	 



where m is number of SNPs and Z1 and Z2 are the standardized genotype matrices for LAT and 

NLW, respectively. We estimated genetic correlation using bivariate GREML in GCTA(39).  

 

Investigation of Genetic Architecture 

To quantify the extent to which latent causal variants for ALL are shared or population-specific 

between LAT and NLW, we analyzed our GWAS summary data using the tool PESCA(47). 

Briefly, PESCA analyzes GWAS summary data from multiple populations jointly to infer the 

genome-wide proportion of causal variants that are population-specific or population-shared. For 

computational efficiency, PESCA requires first defining LD blocks that are approximately 

independent in both populations and assumes that a SNP in a given block is independent from all 

SNPs in all other blocks. We computed pairwise LD matrix in both NLW and LAT using ~329K 

directly genotyped SNPs shared in both populations. Then, following Shi et al.(47), we generated 

the trans-ethnic LD matrix by using the larger r2 value of the NLW or LAT-specific pairwise LD, 

and used LDetect (48) to define LD blocks within the transethnic LD matrix. By setting mean LD 

block size to 200 SNPs and using default parameters, we obtained 1,653 blocks that are 

approximately independent, which is approximately similar to previous reports in East Asians and 

Europeans(47). We then followed Shi et al. to estimate the numbers of population-specific and 

shared causal SNPs using PESCA(47). We restricted our analysis to 1.3M SNPs with MAF > 0.05, 

r2 < 0.95, and with summary association statistics available in both NLW and LAT. We first 

estimated the genome-wide proportion of population-specific and shared causal variants with the 

heritability estimated above (0.2033 and 0.0413 in NLW and LAT, respectively) using default 

parameters in PESCA, parallelizing the analysis in groups of 10 LD blocks at a time. Using the 

estimated genome-wide proportions of population-specific and shared causal variants as prior 



probabilities, we then estimated the posterior probability of each SNP to be causal in a single 

population (population-specific) or both populations (shared), and inferred the posterior expected 

numbers of population-specific/shared causal SNPs in each LD block by summing the per-SNP 

posterior probabilities of being causal in a single or both populations. Critically, while PESCA is 

an analysis based on summary statistics and not designed for admixed populations, it can be 

applied to admixed population such as LAT if in-sample LD is used(47). Through the PESCA 

analysis, we found 1.71% of all common SNPs were inferred to have nonzero effects in both NLW 

and LAT; 1.69% and 1.87% were inferred to have population-specific nonzero effects in NLW 

and LAT, respectively. In other words, approximately 1.71% / (1.71%+1.69%+1.87%) = 32.5% 

of SNPs inferred to be causal are shared between NLW and LAT. 

 

Polygenic Risk Score Analysis 

Polygenic risk scores (PRS) for ALL were constructed using PLINK (v2.0) by summing the 

genotype dosages of risk alleles, each weighted by its effect size from our discovery GWAS meta-

analysis. PRS were constructed based on: (1) lead SNPs in the 16 known loci (N = 18 SNPs, 

including variants from the two secondary signals in IKZF1 and CDKN2A/B that were previously 

reported; for which we used the corresponding effect sizes from conditional analysis), and (2) by 

additionally including the novel hits (N = 23 SNPs, including the additional 3 novel loci and 2 

novel conditional associations). Associations between PRS and case-control status for ALL were 

tested in each group adjusting for 20 PCs using R. To evaluate the predictive power of PRS, Area 

Under the receiver operating characteristic Curve (AUC) were calculated using pROC package(49) 

in R.  
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